Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Simon J. Coles, ${ }^{\text {a }}{ }^{*}$ David E. Hibbs ${ }^{\text {b }}$ and Michael B Hursthouse ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England, and ${ }^{\mathbf{b}}$ School of Chemistry F11, University of Sydney, NSW 2006, Australia

Correspondence e-mail: s.j.coles@soton.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.096$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-tert-Butylperoxy-5-(oxiran-2-yl)-1-(prop-2-ynyl)-pyrrolidin-2-one

The title compound, $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}$, contains the 5-tert-butyl-peroxy-, 5-oxiranyl- and 1-prop-2-ynyl-substituted pyrrolidin-2-one ring system in an envelope conformation, with one CH_{2} C atom out of the plane by 0.272 (3) \AA.

Comment

The action of tert-butyl hydroperoxide and tin(IV) chloride upon allylic alcohols containing a lactam ring leads mainly to epoxy alkyl peroxides with high diastereoselection. The structure of the title compound, (I), is the anti diastereoisomer of one such peroxide. The core of the structure is a pyrrolidinone ring in an envelope conformation (Cremer \& Pople, 1975), with C6 out of the ring plane by 0.272 (3) A. The substituents consist of a prop-2-ynyl chain attached to the ring N atom and both tert-butylperoxy and oxiranyl moieties attached to C 7 in the 5-position, making it an S configuration. All bond lengths and angles were found to be within expected ranges. No classic hydrogen bonds were found; however, a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions with separations less than the sum of the van der Waals radii (Bondi, 1964) were found to form a three-dimensional network. These interactions are detailed in Table 2.

(I)

Experimental

The reaction of a diperoxide and an epoxy peroxide in the presence of SnCl_{4} produced a mixture of diastereoisomers. Crystals of (I) were obtained from an ethyl acetate/petroleum ether (313-333 K) mixture (Hursthouse et al., 1995; Marson et al., 2001).

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} & D_{x}=1.257 \mathrm{Mg} \mathrm{~m}^{-3} \\
M_{r}=253.29 & \text { Mo K } \alpha \text { radiation } \\
\text { Monoclinic, } P 2_{1} / a & \text { Cell parameters from } 5318 \\
a=10.2870(14) \AA & \text { reflections } \\
b=10.729(2) \AA & \theta=2.5-24.9^{\circ} \\
c=13.1233(13) \AA & \mu=0.09 \mathrm{~mm}^{-1} \\
\beta=112.423(13)^{\circ} & T=150(2) \mathrm{K} \\
V=1338.9(4) \AA^{3} & \text { Block, colourless } \\
Z=4 & 0.20 \times 0.20 \times 0.15 \mathrm{~mm}
\end{array}
$$

Received 27 November 2000 Accepted 11 December 2000 Online 14 December 2000

Figure 1
View of (I) shown with 50% probability displacement ellipsoids.

Data collection

FAST TV area-detector diffract-	2041 independent reflections
\quad ometer	1516 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.073$
Absorption correction: refined from	$\theta_{\max }=24.9^{\circ}$
ΔF (Walker \& Stuart, 1983)	$h=-11 \rightarrow 12$
$T_{\min }=0.985, T_{\max }=0.989$	$k=-9 \rightarrow 12$
5318 measured reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R(F)=0.040$
$w R\left(F^{2}\right)=0.096$
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0482 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
2041 reflections
166 parameters

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.59	$3.387(2)$	140
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{O}^{\mathrm{ii}}$	0.93	2.42	$3.275(3)$	153
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.97	2.46	$3.420(2)$	169
C5-H5A $\cdots \mathrm{O}^{\mathrm{iv}}$	0.97	2.42	$3.348(2)$	160
Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, z ;$ (ii) $x-\frac{1}{2}, \frac{1}{2}-y, z ;$	(iii) $1-x, 1-y, 1-z ;$ (iv)			
$\frac{1}{2}+x, \frac{3}{2}-y, z$.				

Details of the data collection method are described by Darr et al. (1993). H atoms were treated as riding atoms ($\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$).

Data collection: MADNES (Pflugrath \& Messerschmidt, 1989); cell refinement: $M A D N E S$; data reduction: $A B S M A D$ (Karaulov, 1992); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: CAMERON (Watkin et al., 1993).

The authors would like to thank EPSRC for funding of the crystallographic facilities.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Darr, J. A., Drake, S. R., Hursthouse, M. B. \& Malik, K. M. A. (1993). Inorg. Chem. 32, 5704-5708.
Hursthouse, M. B., Khan, A., Marson, C. M. \& Porter, R. (1995). Tetrahedron Lett. 36, 5979-5981.
Karaulov, A. I. (1992). ABSMAD. University of Wales, Cardiff, Wales.
Marson, C. M., Khan, A., Porter, R. A. \& Hursthouse, M. B. (2001). J. Org. Chem. Accepted.
Pflugrath, J. W. \& Messerschmidt, A. (1989). MADNES. Version of 11 September 1989. Distributed by Delft Instruments, Delft, The Netherlands. Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Sheldrick, G. M. (1985). SHELXS866. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175-189. Oxford University Press.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. University of Oxford, England.

